

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Questions

If you have questions about





          

      

      

    

  

    
      
          
            
  
Documentation


Bone class methods


.get_xyz(self)

Convert 3D voxel array to xyz coordinates.

array (np.array): 3D voxel array

filter_level (int/float): (inherited from bone class) sets the threshold level for what is considered a voxel. Everything below filter level is rounded to 0, everything above rounded to 1 (ie voxel)

returns: 
    np.array([n x 3])








.get_pca(self)

Performs PCA on the xyz points array

xyz(np.array): n x 3 array of xyz coordinates

return (self.pc1
        self.pc2
        self.pc3)








.get_mean(self)

Gets the mean xyz coordinates for xyz array

return (
        np.mean(self.xyz[:, 0]),
        np.mean(self.xyz[:, 1]),
        np.mean(self.xyz[:, 2]),








.center_to_origin(self)

Sets the mean of the bone to (0,0,0)




.reset_position(self)

Returns bone to original position in space




.plot(self, user_color=None, PCA_inv=None, PCA=True)

Plot voxels with optional PCA, and colours

user_color (tuple): RGB color of the bone where 1 is maxium eg: red = (1,0,0)

www.colortools.net/color_mixer.html [https://www.colortools.net/color_mixer.html] is a good tool to work out what the best colour to use is.

PCA (boolean): plots the PCAs of the voxel

PCA_inv (boolean): plots the inverse of each PCA so the axes go in both directions




.scale(self, n)

n = scale factor

scales the voxel data array by n




xyz_to_array(self. array_dim=(256,256,256))

Creates a numpy voxel array the size of array_dimfrom .xyz attribute.

array_dim list/tupple (1x3)

return vx_array










Functions


mag(v)

v = vector (np.array 1x3)

Finds magnitude of vector




angle (v1, v2)

v1, v2 = vector (np.array 1x3)

Finds the angel between two vectors

return ang, v1








quaternion_rotation_from_angle(v, c_axis, theta)

v = vector (np.array 1x3)

c_axis = cross product between two principle conponets

theta = angle of rotation (radians)




rotate(bone_f1, bone_f2, interpolate=False, scale_factor=2)

Aligns and rotates bone_f1 to bone_f2

bone_f1, bone_f2 = bone class object

interpolate = (boolean) if True bone_f1 is upscaled, rotated and downscaled to increase point density.

scale_factor = set how much the bone will be upscaled to increase the density.









          

      

      

    

  

    
      
          
            
  
How to use


Set custom filter level (optional)

bone.filter_level = 0.1








Set custom colour for bone (optional)

tibia_f1.default_color = (0.8, 0.3, 0)








1. Load the data that you want to use

tibia_f2 = bone.from_matlab_path(matlab_file='phantom/phantom_tibia_f2.mat')

tibia_f1 = bone.from_matlab_path(matlab_file='phantom/phantom_tibia_f1.mat')








2. Rotate the bone

voxel_rotate(tibia_f1, tibia_f2)








3. Plotting the rotation

tibia_f1.plot()
tibia_f2.plot()
mlab.show()





Plotting with mayavi is very similar to matplotplib where you build a scene and call it with show()

You can plot bones by calling the .plot() method and then mlab.show()

[image: _images/alined.png]rotated_image




4. Table of Angles

df_angles(tibia_f1, tibia_f2, name='tibia')











          

      

      

    

  

    
      
          
            
  
How to install


Clone git repo

$ git pull https://github.com/lukemshepherd/PCA-2.git

$ cd PCA-2 








Create conda environment

$ conda env create -f environment.yml

$ conda activate PCA-2








Create PCA-2 package

$ pip install -e .








Installing packages individually


Python

Python 3.6 and higher




mayavi

mayavi install docs [https://docs.enthought.com/mayavi/mayavi/installation.html]
Mayavi plots images by calling the VTK library and displaying it a qt window- this means it is very very fast, however can be a bit of pain to install. Part of this is caused by its ability to work with different qt packages, which makes it very flexible but does also mean it can get a bit confused!

You can use conda to install it but using pip seems to be easier and will sort out the VTK install for you.

$ pip install mayavi

$ pip install PyQt5








numpy-quaternion

Numpy doesn’t natively support quaternions as a data type- this package allows you to pass quaternions properly and makes multiplication and returning the imaginary component a lot easier.

numpy-quaternion github [https://github.com/moble/quaternion]

numpy-quaternion docs [https://quaternion.readthedocs.io/en/latest/]

$ conda install -c conda-forge quaternion





or

$ pip install numpy-quaternion








numpy-stl

Numpy-stl adds support for loading and breaking down stl data.

numpy-stl github [https://github.com/WoLpH/numpy-stl]

numpy-stl documentation [https://numpy-stl.readthedocs.io/en/latest/]

$ pip install numpy-stl













          

      

      

    

  

    
      
          
            
  
Voxel Interpolation


What is the issue

When you rotate the bone the out puts are decimals which cant be put back into the voxel array by upscaling the voxel more of the coordinates are integers and so reduces the resolution loss when converting back into an array.







          

      

      

    

  

    
      
          
            
  
STL files

STL objects are treated pretty much the same as normal voxel objects. They can be rotated/plotted etc. Also they can be used with voxel ones- i.e you can rotate an stl by a voxel.


Loading data:

tibia_stl = bone.from_stl_path(stl_file='phantom/phantom_tibia_f2.stl')








How the data is stored

The full stl data is stored in tibia_stl.data

The stl files are loaded from numpy-stl [https://numpy-stl.readthedocs.io/en/latest/] module




Saving bones back into .stl

tibia_stl.data.save('file.stl')











          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_images/alined.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/up-pressed.png





_static/up.png





